
Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

Utilizing Probability to Solve 2048 Game 
 

Aloisius Adrian Stevan Gunawan - 135230541  

Program Studi Teknik Informatika  

Sekolah Teknik Elektro dan Informatika 

Institut Teknologi Bandung, Jl. Ganesha 10 Bandung 40132, Indonesia  
1kremix6767@gmail.com, 13523054@std.stei.itb.ac.id  

 

 

 

Abstract—This paper explores the utilization of probability to 

play the popular puzzle game, 2048, optimally. Through analyzing 

the tile generation and game mechanics, we aim to develop 

algorithm that increases the chance to obtain higher scores. 

Through simulations and probability-driven calculations, we 

investigate how probability could increase the chance of getting a 

higher score.  

 

Keywords—2048, probability game, solving 2048  

 

 

I.   INTRODUCTION 

In this world, probability governs over many things, ranging 

from the simple 2048 game, to complex thing like quantum 

computing. Probability offers mathematical computation to 

manage uncertainty. This ability enables individuals to make 

choice when faced with unknown possibilities.  

The 2048 game that has been made by Gabrielle Cirulli in 

2014, challenges its player to combine the tiles of number into 

larger number, up to 2048 where the player wins the game. To 

play the game, the player must slide the tiles, combining tiles 

that have the same number in it. This game has an element of 

uncertainty, where each time the player slides, a random new tile 

that have—either a “2” or a “4” —in it. This makes it more 

unpredictable for the players, and thus introducing strategical 

elements in the game. 

This paper investigates the use of probability to improve 

decision-making in playing the game 2048. Specifically, we aim 

to maximize the chances of attaining the highest score. 

 

II.  THEORY 

A. Probability 

Probability is mathematical method to measure the chance of 

an event happening in number. The value 0 indicates 

impossibility, and the value 1 indicates certainty.  

Event is one possible situation in probability. Sample space is 

the set of all possible events. In other words, sample space is all 

possible outcomes of probability. This concept is used 

everywhere, including the game 2048. 

 

B. 2048 Game 

The game uses 4x4 grid board, with each grid holding a value 

of either 0 (none), or 2n, with n > 1. Each turn, the player would 

be able to move all tiles to up, down, left, or right. The 

mechanics of moving is by pushing all tiles to the chosen 

direction, and if there were tiles that contains same value, the 

game would merge those tiles into one tiles that contains double 

the value of the merged tiles. Each tile can only be merged once 

per move.  

With each move, this game generates a random tile that 

contains either number “2” or “4”, in a random tile. By 

investigating the source code, we could see that the probability 

of number 2 appearing is 90%, whereas the probability of 

number 4 appearing is 10%. This introduces several possible 

strategies for this game. 

 

C. Strategy 

Each move should consider the probability of achieving the 

desired result, making it more advantageous for the next event. 

This method involves predicting tile placement after the move, 

avoiding deadlock at all cost.  

Risk management is also important, determining whether 

short-term-gain is better, or worse. There are several risk-

management methods: 

1. Score-based: prioritizing score over anything 

2. Free space-based: prioritizing freeing up space over 

anything. 

3. Corner strategy: prioritizing in making the tile with the 

largest value go to a corner of the board, to maximize the 

possibilities to merge faster in the middle. 

4. Edge strategy: Always trying to make the largest tile on 

one edge, but still flexible (unlike corner strategy) 

5. Snake strategy: Arranging the tile with the largest score 

as the head, and adjacent to it is the second largest tile, 

and so on. 

Although there are lots of other strategies, these strategies are 

more general and known intuitively to beginner player.  

With the cost of modularity or time complexity, AI-based 

decision making like Markov chains and Monte Carlo 

Simulation are made possible. 

 

D. Markov Chains 

Markov Chains is a method that stores all possible board 

condition. This model would be used to decide where to move. 

From the example in figure 1, green outlines mean highest 

possible tile has been reached (in a 2x2 board, 8 is the highest 

tile one can achieve), red means deadlock (no other possible 

movement could be made), and black mean the game continues, 

not reaching an endpoint yet.  

For each of the move, the probabilities of it happening is 

calculated manually. First, we resolve the board in the direction, 

for example, Left (L). This will move all tiles to the left, and 

mailto:1kremix6767@gmail.com
mailto:13523054@std.stei.itb.ac.id


Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

merges all mergeable tiles. After moving, there will be a random 

number generated in the board. This number would be either 

number 2 with 90% chance, or number 4 with 10% chance. 

 

 
Fig 1. Example of markov chain of one board condition in a 

2x2 board 

Source: https://jdlm.info/articles/2018/03/18/markov-

decision-process-2048.html 

 

With markov chains method, every possible board condition 

is precalculated, and the highest-probability move would be 

chosen to win the game. When the player played effectively, the 

player is guaranteed to win the game.  

However, markov chains consumes a lot of memory. For the 

original 4x4 board, it requires at least trillions of board 

condition. With the increasing board size, it will exponentially 

increase the modularity. 

 

III.   METHODOLOGY 

This paper focuses on investigating the use of probability, to 

play optimally, given limited resources. With that in mind, we 

aim to analyze the correlation between probability and 

optimizing gameplay. This includes understanding the game 

mechanics, doing expectimax simulations, optimizing heuristic 

strategy, and doing implementation. 

 

A. Game mechanics 

Before delving deeper into the solution, understanding the 

mechanics of the game is a must. This portion will analyze more 

into the rules of the game, movement, merging tiles, scoring, and 

generating new tiles.  

 

B. Simulation 

The simulation presented will use expectimax method. 

Expectimax is a method that explores several moves into the 

future, then returns the highest average heuristics score. This 

means that although expectimax is not as capable as doing 

markov, it still holds as the most efficient move within a few 

steps into the future. 

 

C. Heuristic strategy 

Heuristic strategy is a form of probabilistic modelling that 

will be integrated into the decision-making. This is the cog that 

guides the decision-making to decide the most optimal move. 

The heuristics include empty tiles maximization and highest 

score maximization. 

The heuristic prioritizes scoring. This will have the most 

impact on the decision-making processes. After the scoring, 

comes the other heuristic factor. 

Empty tiles give more flexibility towards the next turn. 

Having no empty tiles and no valid moves would count as game 

over. 

 

D. Implementation 

This entire methodology will be implemented in python, 

using numPy library. The game simulation using expectimax 

method are designed to be effective and efficient. 

 

IV.   2048 MECHANICS 

The original 2048 game always starts with 4x4 board that 

have 2 tiles with number “2” or “4”. Each turn, the player can 

choose to move the tiles to one direction—up, down, left, or 

right—and then end the turn. 

 

 
Fig 2. Board state example 

 

Moving the tiles starts by shifting all tiles to the 

corresponding direction until there is another tile in that 

direction that have the value of more than 0, or it hits the wall. 

The analogy would be making a strong gravity force into that 

direction. For example, in figure 2, moving up would make 

number 2 in (4,1) go to (1,1), number 4 in (4,2) go to (1,2), 

number 4 in (4,3) go to (1,3), number 2 in (3,4) go to (1,4), and 

number 8 in (4,4) go to (2,4). 

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html
https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html


Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

After shifting the tiles, the game will also check for mergeable 

tiles. It will try to combine tiles with the same value, starting 

from the direction to the opposite direction. The combining 

process is by moving the value of the corresponding tiles to 1 

tile to the direction. Take figure 2 row 4 for example. Assume 

the player chooses right. The code will check (4,8) which is 

unmergeable, then (4,4) which is mergeable, making it (0,8), 

then it checks (2,0), unmergeable. This process will leave row 4 

with [2,0,8,8]. After that, the game will move it to the direction 

once more, eliminating 0s in between. 

Following moving to a direction, the game will generate a 

random tile, with number 2 or 4. By inspecting the source code, 

the probability of number 2 is 90%, whereas the probability of 

number 4 is 10%. The tile chosen as the generated tile is 

randomly chosen. This makes the game unpredictable as the 

score also relies heavily on tile generation. 

Scores is directly represented by the tiles number. It is the sum 

of all the tiles in the board. This makes scoring one of the main 

considerations in the heuristic strategy.  

 

V.   IMPLEMENTATION 

The implementation of this uses python as the programming 

code and also uses the numpy library. The implementation 

would be available on https://github.com/mimiCrai/2048Solver. 

This implementation will ask the state of the board and return 

the most optimal move to make. The input of the board should 

be given space and/or newline for each change of tile. The board 

scanning starts from (1,1), then (1,2), (1,3), (1,4), then (2,1), and 

so on until (4,4). For example, figure 2 will be inputted as in 

figure 3. The program would then prints the board state as a form 

of confirmation. 

 

 
Fig 3. Example of input in the program 

 

After the input, solution to the board-state is next. The main 

strategy I use is by using expectimax heuristic strategy. This 

method finds the most optimal move, by choosing the highest 

average heuristic score of each direction.  

 

 
Fig 4. The code to find the best move 

Source: https://github.com/mimiCrai/2048Solver 

 

As seen in figure 4, This code snippet will simulate the next 

depth move in the future. Depth directly increases the accuracy, 

but also exponentially increases time complexity, and linearly 

increases modularity. 

Find_best_move() requires helping functions, such as move() 

and expectimax().  

 

 
Fig 5. Function expectimax 

Source: https://github.com/mimiCrai/2048Solver 

 

Expectimax here (figure 5) have 3 parameters, that is, board, 

depth, and is_maximizing. Board holds the value of the current 

state of the board, depth holds an integer, representing the 

number of steps in the future to check, and is_maximizing holds 

boolean value.  

When the is_maximizing is false, the function will try to 

https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver


Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

simulate the condition after moving the board. The function 

would first check for endgame condition. If it is endgame, it will 

simply return the current score of the board. The endgame 

condition triggers when the board is full. This is only true in this 

function, as it separates move and tile generation. When the 

endgame condition is not triggered, the program would generate 

a situation with both number 2 and number 4 in every empty tile. 

In each situation, it will call another expectimax, doing a 

recursive function.  With each recursive, the function would 

return numbers that would then be multiplied by the probability 

of that board state happening, to be added into the total score. 

Finally, the program would return the total score. 

When the is_maximizing is true, the function would simulate 

moving the board into four directions. For each of the direction, 

if the move is valid (for example, in figure 2, moving down is 

invalid), the function would call another expectimax function 

that will return total average heuristic score. The function would 

find the largest one, and then returns it. 

 

 

Fig 6. Function game_over 

Source: https://github.com/mimiCrai/2048Solver 

 

The game over condition would trigger when there are no 

more possible move condition, or when there is number 2048 in 

the board, triggerring the endgame win condition. 

 

 
Fig 7. Function move 

Source: https://github.com/mimiCrai/2048Solver 

 

This function holds as the frame of the move mechanic. It 

calls for two other function helper, accordint to the order. It calls 

for sliding tiles once, then merge all mergeable tiles 

corresponding to the direction, then it calls sliding tiles once 

more. This will beautifully create a move mechanic like the 

original 2048 game.  

 

 
Fig 8. function merge_tiles 

Source: https://github.com/mimiCrai/2048Solver 

 

Merging the tiles is a little trickier. It checks for the tiles 

closest to the direction of the move, then check 1 tile closest to 

it, that is at the opposite direction. This move would be repeated 

thrice in total, with each move gets one shift to the opposite 

direction of the move.  

 

https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver


Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 

 
Fig 9. Function slide 

Source: https://github.com/mimiCrai/2048Solver 

 

This code moves the value in the board to the corresponding 

direction, starting from the tile to the most opposite direction. 

This will prevent 0s from getting in between the move.  

 

VI.   TIME COMPLEXITY 

2048 game is played on a nxn board. The size of the board 

directly affect the time complexity of the program. This section 

will calculate the time complexity of the program. 

The function move contains function slide and function 

merge_tiles that each have O(n2) complexity. This means that 

the function move itself have time complexity of O(n2). 

Game_over and evaluate_board also have O(n2).  

Expectimax is a recursive function that have increasingly 

large time complexity, depending on the depth. Expectimax 

have the time complexity of O(n2*4depth), with the worst case of 

O(128depth). This makes expectimax gets exponentially longer 

the larger the depth is.  

The overall time complexity is O(28*depth), meaning that the 

larger the depth is, not only the answer would be more accurate, 

but the time complexity would also grow, exponentially. 

In ideal condition, most modern processors could handle up 

to 109 operations per second. This means that using this 

information, we could approximate maximum depth for 

maximum. 

 

 

 

 
 

The ideal depth for modern processor is around 4. More than 

4 would require at worst 128depth-4 seconds to process.  

 

VII.   TESTING 

Testing the code could be seen as subjective, as we can’t have 

definitive proof, unless we do markov modelling. However, we 

can see the difference of accuracy when we change the depth. 

 

 
Fig. 10. Result using depth of 1 

Source: https://github.com/mimiCrai/2048Solver 

 

 
Fig. 11. Result using depth of 2 

Source: https://github.com/mimiCrai/2048Solver 

 

 
Fig 12. Result of using depth 3 

Source: https://github.com/mimiCrai/2048Solver 

 

 
Fig 13. Result of using depth 4 

Source: https://github.com/mimiCrai/2048Solver 

 

As shown in figure 10, figure 11, figure 12, and figure 13, the 

result may vary depending on the depth of the program. 

Intuitively, moving right is better than moving left, because the 

largest tile, 8, is kept in the corner of the board. This shows that 

higher depth increases the accuracy.  

https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver
https://github.com/mimiCrai/2048Solver


Makalah IF1220 Matematika Diskrit – Semester I Tahun 2024/2025 

 

 

VIII.   CONCLUSION 

This paper has successfully proven that with the use of 

probabilistic algorithm, it increases the chance to obtain higher 

scores in 2048 game. Although it is limited by the time 

complexity and modularity, this method is still accurate up to 

several moves ahead. In the future, optimization and upgrades, 

especially regarding the heuristic strategy that includes score 

and empty tiles, are possible. There is always room for 

improvement.  

 

REFERENCES 

[1] Jdesmileer, “The Mathemathics of 2048: Optimal Play with Markov 

Decision Process,” Available: 

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html. 

Accessed: Jan 7, 2025. 

[2] G., Barghavi, “Mathematical Analysis of 2048, The Game,” Available: 

https://www.ripublication.com/aama17/aamav12n1_01.pdf. Accessed: 

Jan 7, 2025. 

[3] S., Alexsey, “Computational bounds for the 2048 game,” Available: 

https://arxiv.org/pdf/2303.07266. Accessed: Jan 7, 2025. 

 

DECLARATION 

With this, I declare that I this paper I wrote is of my own. I do 

not copy, translate, nor plagiarize the work of others.  

 

Bandung, January 8, 2025   

 

 

 

Aloisius Adrian Stevan Gunawan, 13523054 

https://jdlm.info/articles/2018/03/18/markov-decision-process-2048.html
https://www.ripublication.com/aama17/aamav12n1_01.pdf
https://arxiv.org/pdf/2303.07266

